# Public Library

The public material library is a dictionary containing various dispersive models from real world materials.

In the public material library below, the material names (abbreviated) are in parentheses in the header and the variant names are in the table, which indicates the data source.

# Alumina ("Al2O3")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.21 – 2.07 1-pole, lossless [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Aluminum ("Al")

Variant Valid for (μm) Model Info Reference
'Rakic1995' (default) 0.02 – 1.97 5-pole, lossy [1] [data] (opens new window)
'RakicLorentzDrude1998' 0.06 – 247.97 7-pole, lossy [2] [data] (opens new window)

References:

  1. A. D. Rakic. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum, Appl. Opt. 34, 4755–4767 (1995) [doi] (opens new window)
  2. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271–5283 (1998) [doi] (opens new window)

# Aluminum Arsenide ("AlAs")

Variant Valid for (μm) Model Info Reference
'FernOnton1971' 0.56 – 2.2 2-pole, lossless [1] [data] (opens new window)
'Horiba' (default) 0.41 - 1-pole, lossy [2]

References:

  1. R. E. Fern and A. Onton. Refractive index of AlAs, J. Appl. Phys. 42, 3499–3500 (1971) [doi] (opens new window)
  2. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Aluminum Gallium Nitride ("AlGaN")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.31 – 2.07 1-pole, lossy [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Aluminum Nitride ("AlN")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.26 – 1.65 1-pole, lossless [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Aluminum Oxide ("AlxOy")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.21 – 2.07 1-pole, lossy [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Amino Acid ("Aminoacid")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.25 – 0.83 1-pole, lossless [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Beryllium ("Be")

Variant Valid for (μm) Model Info Reference
'Rakic1998BB' (default) 0.25 – 61.99 4-pole, lossy [1] [data] (opens new window)
'RakicLorentzDrude1998' 0.25 – 61.99 8-pole, lossy [1] [data] (opens new window)

References:

  1. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271–5283 (1998) [doi] (opens new window)

# Calcium Fluoride ("CaF2")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.26 – 1.65 1-pole, lossless [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Cellulose ("Cellulose")

Variant Valid for (μm) Model Info Reference
'Sultanova2009' (default) 0.44 – 1.05 1-pole, lossless [1] [data] (opens new window)

References:

  1. N. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585–587 (2009) [doi] (opens new window)

# Chromium ("Cr")

Variant Valid for (μm) Model Info Reference
'Rakic1998BB' (default) 0.25 – 62.0 4-pole, lossy [1] [data] (opens new window)
'RakicLorentzDrude1998' 0.25 – 61.99 8-pole, lossy [1] [data] (opens new window)

References:

  1. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271–5283 (1998) [doi] (opens new window)

# Copper ("Cu")

Variant Valid for (μm) Model Info Reference
'JohnsonChristy1972' (default) 0.03 – 0.31 5-pole, lossy [1] [data] (opens new window)
'RakicLorentzDrude1998' 0.21 – 12.4 6-pole, lossy [2] [data] (opens new window)

References:

  1. P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370–4379 (1972) [doi] (opens new window)
  2. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271–5283 (1998) [doi] (opens new window)

# Fused Silica ("FusedSilica")

Variant Valid for (μm) Model Info Reference
'ZemaxPMLStable' (default) 0.41 – 1.99 1-pole, lossless [1][2] [data] (opens new window)
'ZemaxSellmeier' 0.21 – 6.7 3-pole, lossless [1][2] [data] (opens new window)
'ZemaxVisiblePMLStable' 0.41 – 0.78 1-pole, lossless [1][2] [data] (opens new window)

References:

  1. I. H. Malitson. Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am. 55, 1205–1208 (1965) [doi] (opens new window)
  2. C. Z. Tan. Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy, J. Non-Cryst. Solids 223, 158–163 (1998) [doi] (opens new window)

# Gallium Arsenide ("GaAs")

Variant Valid for (μm) Model Info Reference
'Palik_Lossless' 1.1 – 30.0 2-pole, low loss [1]
'Palik_Lossy' 0.22 – 1.3 6-pole, lossy [1]
'Skauli2003' (default) 0.97 – 17.0 3-pole, lossless [2] [data] (opens new window)

References:

  1. E. D. Palik. Handbook of Optical Constants of Solids, Academic Press (1998) [doi] (opens new window)
  2. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier. Improved dispersion relations for GaAs and applications to nonlinear optics, J. Appl. Phys., 94, 6447–6455 (2003) [doi] (opens new window)

# Germanium ("Ge")

Variant Valid for (μm) Model Info Reference
'Icenogle1976' (default) 2.5 – 12.0 2-pole, lossless [1][2] [data] (opens new window)
'Palik_Lossless' 1.2 – 20.0 2-pole, low loss [3]
'Palik_Lossy' 0.25 – 1.4 6-pole, lossy [3]

References:

  1. H. W. Icenogle, Ben C. Platt, and William L. Wolfe. Refractive indexes and temperature coefficients of germanium and silicon Appl. Opt. 15 2348–2351 (1976) [doi] (opens new window)
  2. N. P. Barnes and M. S. Piltch. Temperature-dependent Sellmeier coefficients and nonlinear optics average power limit for germanium J. Opt. Soc. Am. 69 178–180 (1979) [doi] (opens new window)
  3. E. D. Palik. Handbook of Optical Constants of Solids, Academic Press (1998) [doi] (opens new window)

# Germanium Oxide ("GeOx")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.31 – 2.07 1-pole, lossy [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Graphene (“graphene”)

Parametric surface conductivity model for graphene.

Graphene(*[, type, mu_c, temp, gamma, ...]) (opens new window)

# Gold ("Au")

Variant Valid for (μm) Model Info Reference
'JohnsonChristy1972' 0.19 – 1.94 6-pole, lossy [1] [data] (opens new window)
'Olmon2012crystal' 0.3 – 24.93 3-pole, lossy [2] [data] (opens new window)
'Olmon2012Drude' 1.24 – 24.93 3-pole, lossy [2] [data] (opens new window)
'Olmon2012evaporated' (default) 0.3 – 24.93 3-pole, lossy [2] [data] (opens new window)
'Olmon2012stripped' 0.3 – 24.93 3-pole, lossy [2] [data] (opens new window)
'RakicLorentzDrude1998' 0.25 – 6.2 7-pole, lossy [3] [data] (opens new window)

References:

  1. P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370–4379 (1972) [doi] (opens new window)
  2. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke. Optical dielectric function of gold, Phys. Rev. B 86, 235147 (2012) [doi] (opens new window)
  3. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271–5283 (1998) [doi] (opens new window)

# Hafnium Oxide ("HfO2")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.21 – 0.83 1-pole, lossy [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Hexamethyldisilazane, or Bis(trimethylsilyl)amine ("HMDS")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.19 – 0.83 1-pole, lossy [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Indium Arsenide (“InAs”)

Variant Valid for (μm) Model Info Reference
'Palik' (default) 0.55 – 1.4 3-pole, lossy [1]

References:

  1. E. D. Palik. Handbook of Optical Constants of Solids, Academic Press (1998) [doi] (opens new window)

# Indium Phosphide ("InP")

Variant Valid for (μm) Model Info Reference
'Palik_Lossless' 0.93 – 10.0 1-pole, low loss [1]
'Palik_Lossy' 0.22 – 0.82 5-pole, lossy [1]
'Pettit1965' (default) 0.95 – 10.0 2-pole, lossless [2][3][4] [data] (opens new window)

References:

  1. E. D. Palik. Handbook of Optical Constants of Solids, Academic Press (1998) [doi] (opens new window)
  2. G. D. Pettit and W. J. Turner. Refractive index of InP, J. Appl. Phys. 36, 2081 (1965) [doi] (opens new window)
  3. A. N. Pikhtin and A. D. Yas'kov. Disperson of the refractive index of semiconductors with diamond and zinc-blende structures, Sov. Phys. Semicond. 12, 622–626 (1978)
  4. Handbook of Optics, 2nd edition, Vol. 2. McGraw-Hill 1994 (ISBN 9780070479746)

# Indium Tin Oxide ("ITO")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.21 – 0.83 1-pole, lossy [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Magnesium Fluoride ("MgF2")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.33 – 1.55 1-pole, lossless [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Magnesium Oxide ("MgO")

Variant Valid for (μm) Model Info Reference
'StephensMalitson1952' (default) 0.36 – 5.4 3-pole, lossy [1] [data] (opens new window)

References:

  1. R. E. Stephens and I. H. Malitson. Index of refraction of magnesium oxide, J. Res. Natl. Bur. Stand. 49 249–252 (1952) [doi] (opens new window)

# Molybdenum Disulfide (“MoS2”)

Variant Valid for (μm) Model Info Reference
'Li2014' (default) 0.42 – 0.83 Medium2D (opens new window) [1]

References:

  1. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. Shih, J. Hone, and T. F. Heinz. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2, Phys. Rev. B 90, 205422 (2014) [doi] (opens new window)

# Molybdenum Diselenide (“MoSe2”)

Variant Valid for (μm) Model Info Reference
'Li2014' (default) 0.42 – 0.83 Medium2D (opens new window) [1]

References:

  1. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. Shih, J. Hone, and T. F. Heinz. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2, Phys. Rev. B 90, 205422 (2014) [doi] (opens new window)

# N-BK7 Borosilicate Glass ("BK7")

Variant Valid for (μm) Model Info Reference
'Zemax' (default) 0.3 – 2.5 3-pole, lossless [1] [data] (opens new window)

References:

  1. SCHOTT Zemax catalog 2017–01–20b [url] (opens new window)

# Nickel ("Ni")

Variant Valid for (μm) Model Info Reference
'JohnsonChristy1972' (default) 0.19 – 1.94 5-pole, lossy [1] [data] (opens new window)
'RakicLorentzDrude1998' 0.25 – 6.2 8-pole, lossy [2] [data] (opens new window)

References:

  1. P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370–4379 (1972) [doi] (opens new window)
  2. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271–5283 (1998) [doi] (opens new window)

# Palladium ("Pd")

Variant Valid for (μm) Model Info Reference
'JohnsonChristy1972' (default) 0.19 – 1.94 5-pole, lossy [1] [data] (opens new window)
'RakicLorentzDrude1998' 0.25 – 12.4 7-pole, lossy [2] [data] (opens new window)

References:

  1. P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370–4379 (1972) [doi] (opens new window)
  2. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271–5283 (1998) [doi] (opens new window)

# Platinum ("Pt")

Variant Valid for (μm) Model Info Reference
'RakicLorentzDrude1998' 0.25 – 12.4 6-pole, lossy [1] [data] (opens new window)
'Werner2009' (default) 0.1 – 2.48 5-pole, lossy [2] [data] (opens new window)

References:

  1. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271–5283 (1998) [doi] (opens new window)
  2. W. S. M. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys Chem Ref. Data 38, 1013–1092 (2009) [doi] (opens new window)

# Poly(methyl Methacrylate) ("PMMA")

Variant Valid for (μm) Model Info Reference
'Horiba' 0.27 – 1.65 1-pole, lossless [1]
'Sultanova2009' (default) 0.44 – 1.05 1-pole, lossless [2] [data] (opens new window)

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)
  2. N. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585–587 (2009) [doi] (opens new window)

# Polycarbonate ("Polycarbonate")

Variant Valid for (μm) Model Info Reference
'Horiba' 0.31 – 0.83 1-pole, lossless [1]
'Sultanova2009' (default) 0.44 – 1.05 1-pole, lossless [2] [data] (opens new window)

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)
  2. N. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585–587 (2009) [doi] (opens new window)

# Polyetherimide ("PEI")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.26 – 1.65 1-pole, lossless [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Polyethylene Naphthalate ("PEN")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.39 – 0.83 1-pole, lossless [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Polyethylene Terephthalate ("PET")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) Not specified 1-pole, lossless [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Polystyrene ("Polystyrene")

Variant Valid for (μm) Model Info Reference
'Sultanova2009' (default) 0.44 – 1.05 1-pole, lossless [1] [data] (opens new window)

References:

  1. N. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585–587 (2009) [doi] (opens new window)

# Polytetrafluoroethylene, or Teflon ("PTFE")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.19 – 0.83 1-pole, lossless [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Polyvinyl Chloride ("PVC")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.26 – 0.83 1-pole, lossless [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Sapphire ("Sapphire")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.23 – 0.83 1-pole, lossless [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Silicon (Amorphous) ("aSi")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.21 – 0.83 1-pole, lossy [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Silicon (Crystalline) ("cSi")

Variant Valid for (μm) Model Info Reference
'Green2008' (default) 0.25 – 1.45 4-pole, lossy [1] [data] (opens new window)
'Li1993_293K' 1.2 – 14.0 1-pole, lossless [2] [data] (opens new window)
'Palik_Lossless' 1.2 – 250.0 1-pole, low loss [3]
'Palik_Lossy' 0.1 – 1.4 5-pole, lossy [3]
'SalzbergVilla1957' 1.36 – 11.0 1-pole, lossless [4][5] [data] (opens new window)

References:

  1. M. A. Green. Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients, Sol. Energ. Mat. Sol. Cells 92, 1305–1310 (2008) [doi] (opens new window)
  2. H. H. Li. Refractive index of silicon and germanium and its wavelength and temperature derivatives, J. Phys. Chem. Ref. Data 9, 561–658 (1993) [doi] (opens new window)
  3. E. D. Palik. Handbook of Optical Constants of Solids, Academic Press (1998) [doi] (opens new window)
  4. C. D. Salzberg and J. J. Villa. Infrared Refractive Indexes of Silicon, Germanium and Modified Selenium Glass, J. Opt. Soc. Am., 47, 244–246 (1957) [doi] (opens new window)
  5. B. Tatian. Fitting refractive-index data with the Sellmeier dispersion formula, Appl. Opt. 23, 4477–4485 (1984) [doi] (opens new window)

# Silicon Carbide ("SiC")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.31 – 2.07 1-pole, lossless [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Silicon Dioxide ("SiO2")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.25 – 1.77 1-pole, lossy [1]
'Palik_Lossless' 0.15 – 5.0 1-pole, low loss [2]
'Palik_Lossy' 4.0 – 250.0 5-pole, lossy [2]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)
  2. E. D. Palik. Handbook of Optical Constants of Solids, Academic Press (1998) [doi] (opens new window)

# Silicon Mononitride ("SiN")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.21 – 2.07 1-pole, lossy [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Silicon Nitride ("Si3N4")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.23 – 0.83 1-pole, lossy [1]
'Luke2015PMLStable' 0.41 – 1.97 2-pole, lossless [2] [data] (opens new window)
'Luke2015Sellmeier' 0.31 – 5.5 2-pole, lossless [2] [data] (opens new window)
'Philipp1973Sellmeier' 0.21 – 1.24 1-pole, lossless [3][4] [data] (opens new window)

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)
  2. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator, Opt. Lett. 40, 4823–4826 (2015) [doi] (opens new window)
  3. H. R. Philipp. Optical properties of silicon nitride, J. Electrochim. Soc. 120, 295–300 (1973) [doi] (opens new window)
  4. T. Baak. Silicon oxynitride; a material for GRIN optics, Appl. Optics 21, 1069–1072 (1982) [doi] (opens new window)

# Silicon Oxynitride ("SiON")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.41 – 1.65 1-pole, lossless [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Silver ("Ag")

Variant Valid for (μm) Model Info Reference
'JohnsonChristy1972' 0.19 – 1.94 3-pole, lossy [1] [data] (opens new window)
'Rakic1998BB' (default) 0.25 – 12.4 6-pole, lossy [2] [data] (opens new window)
'RakicLorentzDrude1998' 0.25 – 12.4 8-pole, lossy [2] [data] (opens new window)
'Yang2015Drude' 0.19 – 1.94 3-pole, lossy [3] [data] (opens new window)

References:

  1. P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370–4379 (1972) [doi] (opens new window)
  2. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271–5283 (1998) [doi] (opens new window)
  3. H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, M. B. Raschke. Optical dielectric function of silver, Phys. Rev. B 91, 235137 (2015) [doi] (opens new window)

# Tantalum Pentoxide ("Ta2O5")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.31 – 1.65 1-pole, lossy [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Titanium ("Ti")

Variant Valid for (μm) Model Info Reference
'RakicLorentzDrude1998' 0.25 – 31.0 7-pole, lossy [1] [data] (opens new window)
'Werner2009' (default) 0.1 – 2.48 5-pole, lossy [2] [data] (opens new window)

References:

  1. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271–5283 (1998) [doi] (opens new window)
  2. W. S. M. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys Chem Ref. Data 38, 1013–1092 (2009) [doi] (opens new window)

# Titanium Oxide ("TiOx")

Variant Valid for (μm) Model Info Reference
'HorbiaStable' 0.41 – 2.07 2-pole, lossless [1]
'Horiba' (default) 0.41 – 2.07 1-pole, lossless [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Tungsten ("W")

Variant Valid for (μm) Model Info Reference
'RakicLorentzDrude1998' 0.25 – 12.4 6-pole, lossy [1] [data] (opens new window)
'Werner2009' (default) 0.1 – 2.48 5-pole, lossy [2] [data] (opens new window)

References:

  1. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271–5283 (1998) [doi] (opens new window)
  2. W. S. M. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys Chem Ref. Data 38, 1013–1092 (2009) [doi] (opens new window)

# Tungsten Disulfide (“WS2”)

Variant Valid for (μm) Model Info Reference
'Li2014' (default) 0.42 – 0.83 Medium2D (opens new window) [1]

References:

  1. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. Shih, J. Hone, and T. F. Heinz. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2, Phys. Rev. B 90, 205422 (2014) [doi] (opens new window)

# Tungsten Diselenide (“WSe2”)

Variant Valid for (μm) Model Info Reference
'Li2014' (default) 0.42 – 0.83 Medium2D (opens new window) [1]

References:

  1. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. Shih, J. Hone, and T. F. Heinz. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2, Phys. Rev. B 90, 205422 (2014) [doi] (opens new window)

# Water ("H2O")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.21 – 0.83 1-pole, lossless [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)

# Yttrium Aluminium Garnet ("YAG")

Variant Valid for (μm) Model Info Reference
'Zelmon1998' (default) 0.4 – 5.0 2-pole, lossless [1] [data] (opens new window)

References:

  1. D. E. Zelmon, D. L. Small and R. Page. Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 , Appl. Opt. 37, 4933–4935 (1998) [doi] (opens new window)

# Yttrium Oxide ("Y2O3")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.31 – 0.8 1-pole, lossless [1]
'Nigara1968' 0.25 – 9.6 2-pole, lossless [2] [data] (opens new window)

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)
  2. Y. Nigara. Measurement of the optical constants of yttrium oxide, Jpn. J. Appl. Phys. 7, 404–408 (1968) [doi] (opens new window)

# Zirconium Oxide ("ZrO2")

Variant Valid for (μm) Model Info Reference
'Horiba' (default) 0.41 – 0.83 1-pole, lossy [1]

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url] (opens new window)